

ABB Power Generation Energy Efficiency: February 2012

Richard Vesel

PGEE for IEC Benefits of a Comprehensive Energy Efficiency Assessment

PGEE: Benefits of a Comprehensive Energy Efficiency Assessment

- Speaker name: Richard Vesel
- Speaker title: Global Product Manager
 EBoP for Energy Efficiency
- Company name:
- Location:

- ABB Inc.
 - Wickliffe, Ohio USA

- Email
- Phone

richard.w.vesel@us.abb.com

+1-440-585-6596 (office) +1-330-819-5054 (cell)

Plant Losses: Thermal Process Losses + Auxiliary Plant Loads

- Conventional fossil-fired boiler power plants
 60-70% Thermal loss plus 7 15% Auxiliary loss
- CCGT: Combined cycle gas turbine power plants
 45-50% Thermal loss plus 3 4% Auxiliary loss

Inefficiency loses money via higher heat rates* and reduced net capacity

- Reduced power sales revenue / Excess fuel cost expenditures
 - For North American Coal-fired plants:

Best HR: 9300 Btu/KWh (Eff = 37%)

Worst HR: 14000 Btu/KWh (Eff = 24%)

Plant Efficiency Improvements: Utilitity Industry Drivers

Operating Costs Increasing

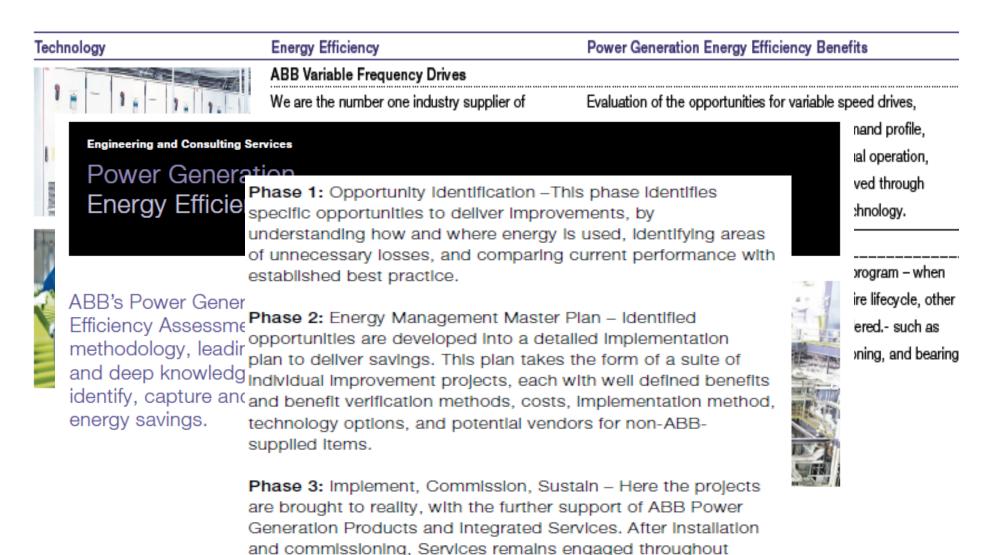
- Plant net & gross efficiencies gradually deteriorate while fuel costs rise (thermal → electric conversion efficiency declines with age)
- Environmental requirements for BACT: Best Available Control Technology, to be applied to plants for energy efficiency improvement and MACT for emissions control (Mercury, Arsenic, NOx, SOx, PM2.5) – USA: December, 2011
- Moratorium on new coal plant construction Public & Financial foes
 - Cost of <u>></u> \$2M / MW for new plant construction v. Gas of <u><</u> \$1M / MW
 - Least efficient older thermal plants are being retired or moth-balled <u>now</u>!
 - Need to Increase efficiency, output and lifetime of existing viable sites
 - What plants will "make the cut"? Answer: Cleanest & Lowest \$/MWhr

Negative drivers – Slow economy has temporarily reduced power demands

- How long will that last? A lot less than new plant construction cycles!

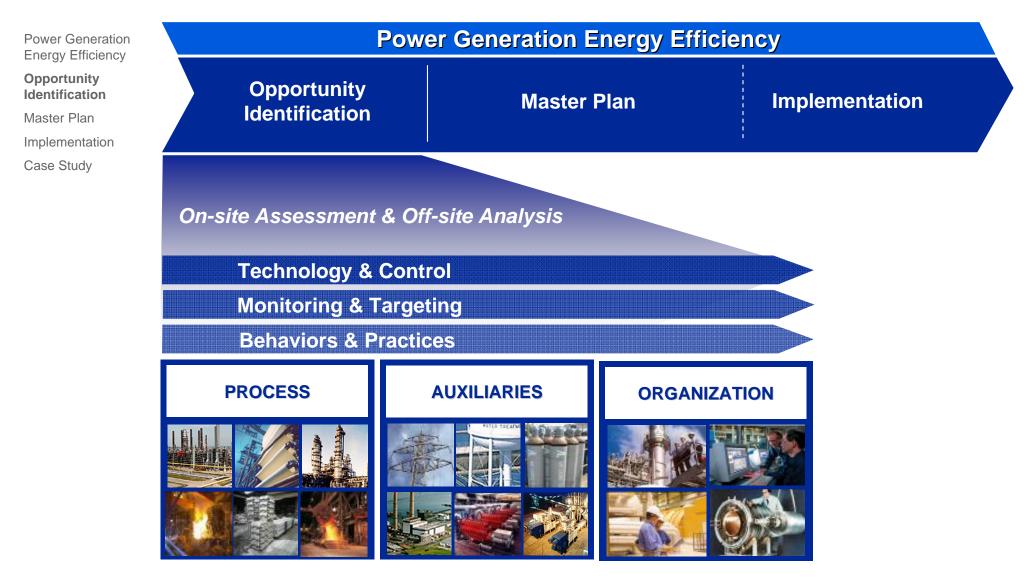
Some example numbers for crunching...

- Opportunities in a "typical" 400MW fossil-fired boiler unit circa 1970's
 - Improve upon Net Heat Rate of 10,800 Btu/kWh
 - Reduce existing house load of <u>></u>25MW
 - Leaks, cycle isolation and operability issues identified, addressed & corrected
 - New motors and VFD's applied to largest pumps & fans
 - Advanced Controls applied to O2, spray flows & controllability issues
 - 25MW of house load reduced to < 20MW
 - Net heat rate improvement of 3%+ on average
 - Capacity improvement of 6-12MW+ at full output
 - Analyze against unit load, cost & sale profiles using above improvements
 - Each Megawatt of utilized additional capacity is worth \$500k/yr or more
 - Conservative spectrum of project paybacks from less than 6 months, up to 5 years


Opportunities in a CCGT plant

- Fuel quality monitoring
- Turbine Instrumentation & Efficiency Monitoring
- Burner balancing & tuning
- VFD's for fuel compressor
- VFD for electrically driven BFP
 - Note: Single outlet BFP only
- VFD's on cooling system fans and/or pumps

Power Generation Energy Efficiency Plant Energy Efficiency Assessments


expectations.

the life-cycle of the equipment, insuring that it meets it

ABB

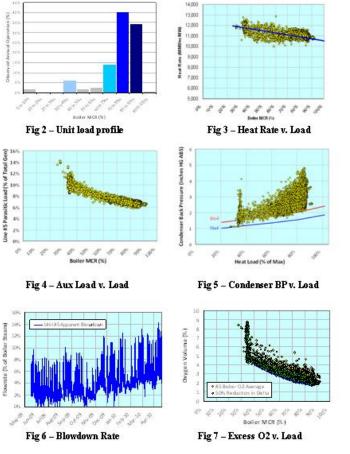
Power generation energy efficiency Full-plant energy efficiency assessment

PGEE Assessment Program: Review of Monitoring & Targeting

Recording	Measuring and recording energy consumption			
Analyzing	Correlating energy consumption to a measured output, e.g. production quantity			
Comparing	Comparing energy consumption to an appropriate standard or benchmark			
Targeting	Setting targets to reduce or control energy consumption			
Monitoring	Comparing energy consumption to the set target on a regular basis			
Reporting	Reporting results including any variances from the targets which have been set			
Controlling	Implementing management measures to correct any variances.			

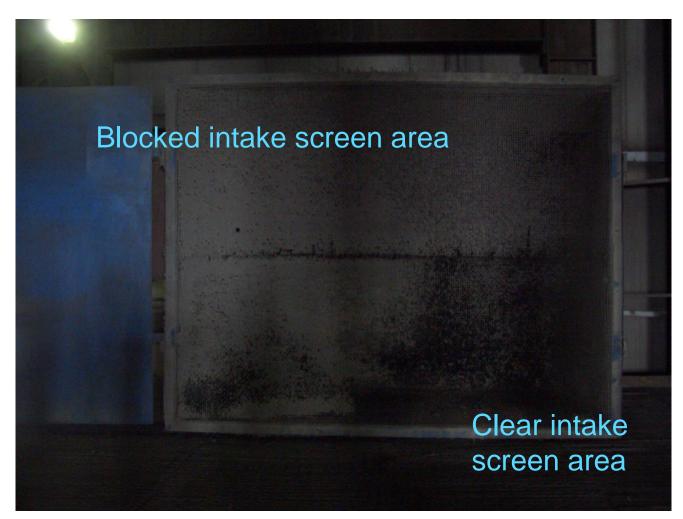
Power Generation Energy Efficiency Areas of investigation & evaluation

Technology & Control	Behaviors & Practices		
Identification of improvements through process control, equipment modification or alternative energy efficient technologies, typically covering the following energy systems:	Assessment of behaviors and practices relating to energy efficiency across site processes and utility operations through a comprehensive review versus best practice, including:		
Gas Turbines	Energy Strategy & Policy		
 Steam Boilers, Turbines & Systems 	Energy Management Methods		
 Electric Generator & Related Equipment 	Capital Investment		
 Major Pump, Fan & Motor Systems 	 Information Technology 		
Electrical Systems – High Voltage & Site MV/LV Systems	 Operational Management 		
Compressed Air & Industrial Gases	Operational Planning & Performance		
 Heating, Ventilation & Air Conditioning (HVAC) 	 Training & Development 		
 Refrigeration & Chilling Systems 	 Maintenance Practices & Strategies 		
	Staff Motivations & Incentives		


Power Generation Energy Efficiency Example of site assessment schedule

• Concentrated site assessment with 2 on-site teams:

	Day 1 (07 th June 2010)	Day 2 (08 th June 2010)	Day 3 (09 th June 2010)	Day 4 (10 th June 2010)	Day 5 (11 th June 2010)	
ABB Team A	Kick-Off Boiler Island	Turbine Island KPI Systems	Electrical Infrastructure	Consolidation & Contingency	Close-out	
ABB Team B	Kick-Off Materials Handling	Water Systems Comp Air	Maintenance /Flue Gas Treatment	Consolidation & Contingency	meeting	

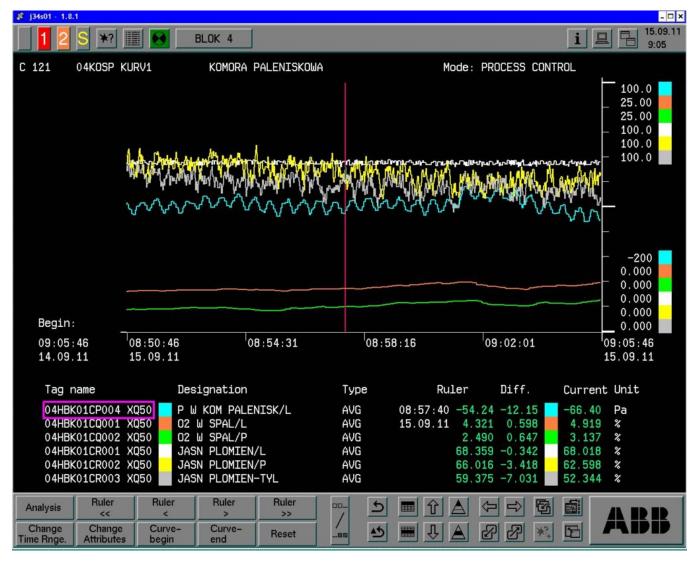

Power Generation Energy Efficiency A few site assessment examples

Equipment Inspected, Plant Data Extracted & Analyzed

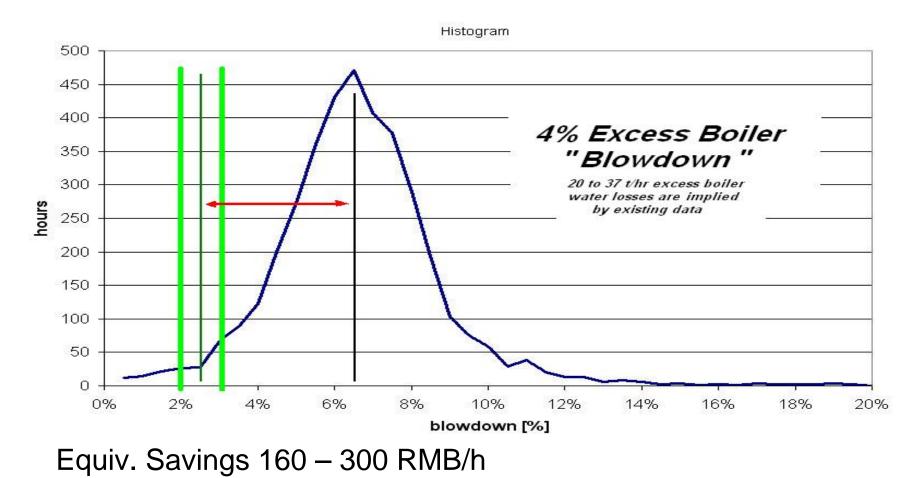
Sample Results: FD Fan Intake at boiler top (PL)

Cleaning the air inlet will allow for more air flow

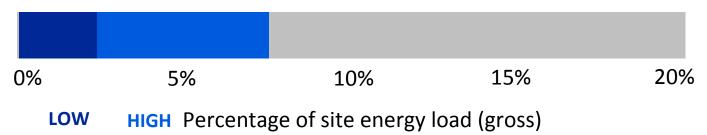
This will increase intake flow for the primary air, secondary air and the mill fans.


Generator H2 cooling water circulation pump leak

Furnace pressure oscillates with a period of ~30 sec


This may be due to air preheater leakage, so it should be investigated.

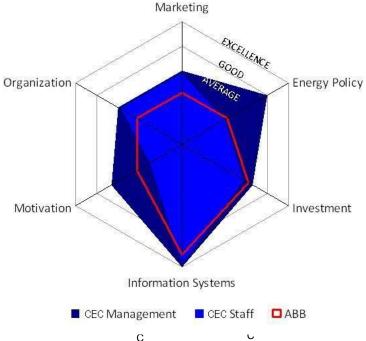
Reduction of Blow Down Losses (CN)


- Identify water losses in water-steam cycle
- Find and repair leakages if any
- Install automatic water chemistry monitoring & controls to minimize blow down

Power Generation Energy Efficiency 400 MW "Rydell" power plant results overview

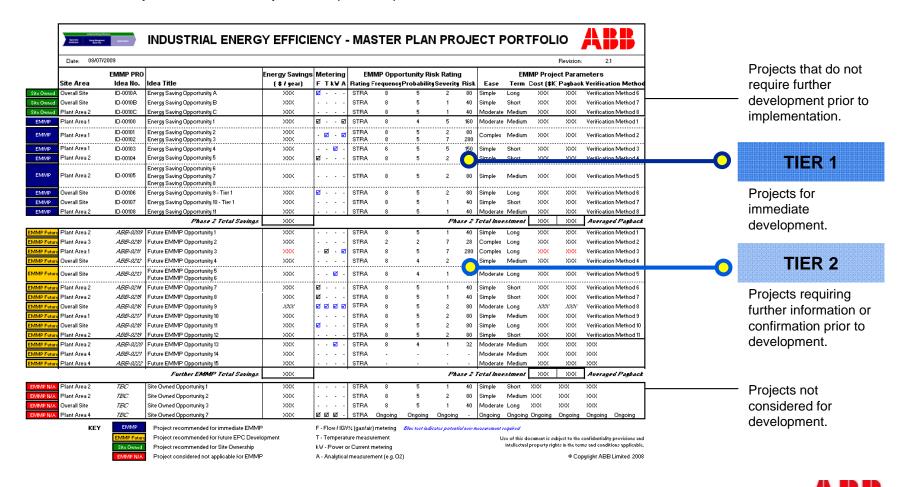
- Total of 47 energy efficiency opportunities identified across:
 - Technology & Control
 - Behaviors & Practices
 - Monitoring & Targeting
- Total portfolio value range of:

US\$ 4 to 11 Million/year



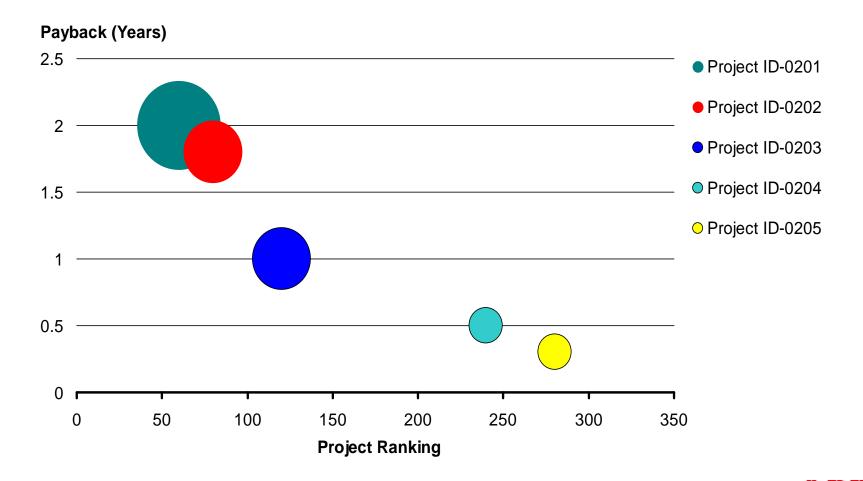
Analysis stage to confirm and improve resolution of values

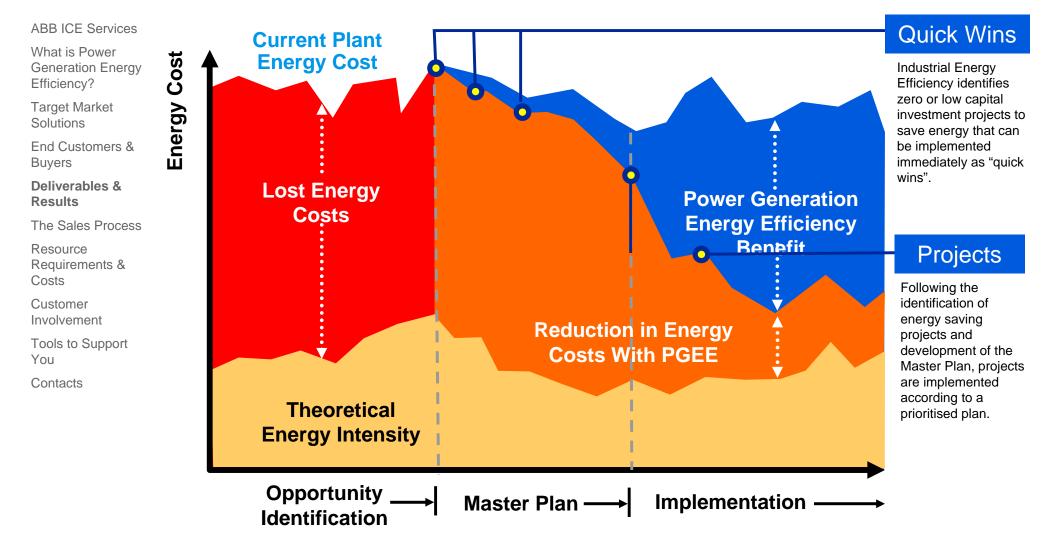
"Rydell" Energy Efficiency Assessment: Recently completed 400MW unit (July 2010)


- 96 page Opportunity Identification Report
- 47 Energy Savings opportunities identified
- \$4M \$11M/yr potential savings
- Assessment covered full plant:
 - Boiler Island
 - Turbine & Generator Island
 - Electrical Balance of Plant
 - Control System
 - Performance Monitoring & Usage of information
 - Materials Handling, Water & Air Systems
 - Management processes & internal promotion of Energy Efficiency activities
- One of the major findings: significant blowdown leakage then repaired during a recent outage
 - Savings \$1.2M/yr → Payback for assessment cost: <u>3 weeks</u>

Energy Efficiency Master Plan Alignment workshop – prioritization of projects

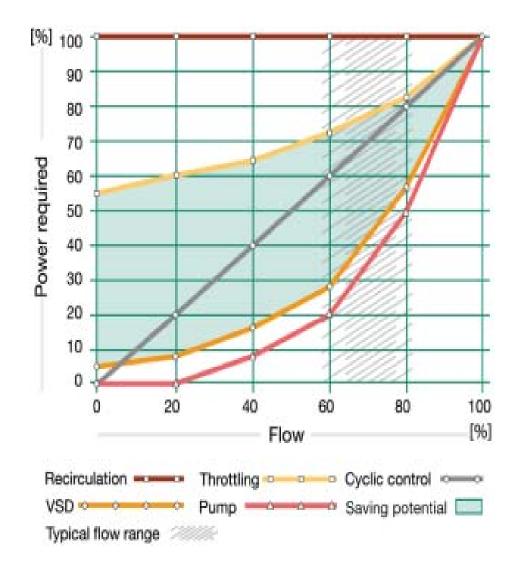
Project Portfolio


Tiered portfolio of energy saving projects, prioritised into projects for immediate development (Tier 1) and projects requiring further information or confirmation prior to development (Tier 2).


Energy Efficiency Master Plan Alignment workshop – economic prioritization

Prioritization Chart

A visual representation of simple payback, project value and project ranking as a combination of 'feasible', 'simple' and 'quick' parameter assessment.


Power Generation Energy Efficiency Value creation

Energy Savings and Reduced Emissions

- Pumps and fans typically run at partial loads
- Huge energy savings can be achieved by controlling their speed with variable speed drives
- A pump or fan running at half speed consumes as little as one eighth of the energy compared to one running at full speed
- Energy consumption can be reduced by as much as 60% with variable speed drives
- Variable speed drives help to reduce CO₂ and other emissions

Medium Voltage Drives: New in 2011

ACS 2000

- Targeted specifically for Power Generation Pump, Fan and Compressor Applications
- Direct-to-Line Connection w/ Low Harmonics
- Air-cooled
- Power range: 400 kW 2 MW
- Output voltages: 4.16 kV, 6.9kV
- Active Front End permits VAR Compensation
- Modular Solution for "off the shelf" applications

Advanced Controls Coal-fired Plant: Lorraine, France

Customer needs

- Customer wanted to capture added value with faster ramp rate response for secondary frequency control
- Original controls were installed in 1970's and were operating slowly and poorly

ABB's response


- Upgraded boiler and turbine controls
- MODAN Advanced Unit Control
- Coordinated boiler-turbine control for sliding pressure operation

Customer benefits

- Improved efficiency and reliability
- Response capability of <u>+</u>25MW in 30 sec with 265MW max net output
- Improved plant revenue due to participation in secondary frequency control program

Drive and Motor Systems Waste-to-Energy Plant: Florida, USA

Customer needs

- ID Fans used unreliable old (non-ABB) MV drives
- Last units made of that type
- Problematic with many failures
- No spare parts available

ABB's response

- ACS1000 Modern MV-Drive Design
- High Reliability
- Fully supported & serviced
- Six drives installed in 2003

Customer benefits

- Reduced energy consumption
- Reduced maintenance virtually trouble-free and outage-free operation 24/7 for six years
- Only 1 failure in 1 drive, in six years of operation (cooling fan bearing)

Ask us for more about **Power Generation Energy Efficiency**

- **Free** and available to all of our utility customers:
 - Power Plant Energy Efficiency Handbook
 - Rydell Energy Center Assessment Report
 - On-site presentation of our EE approach
 - (Soon CCGT Assessment report)
- Contact your ABB Service Account Manager, Front End Sales Representative or Strategic Account Manager for an on-site presentation and performing a quick opportunity evaluation.

Power and productivity for a better world[™]

