#### **Electrical Protection**

\_\_\_\_

\_\_\_\_

-



# **Electrical Faults**

- Phase to phase
- Phase to ground
- Phase to phase to phase
- Phase to phase to phase to ground



# Purpose of Protection System

- Minimize damage
- Leave unaffected equipment in-service
- Maintain equipment operating limits
- Maintain electrical system stability



# Requirements of a Protection System

- Speed
- Reliability
- Security
- Sensitivity

#### Some terms

- Over-current
- Overload

• Inverse time



### **Protection Zones**

\_\_\_\_

\_\_\_\_

\_\_\_\_







#### **Double Protection**





# Breaker Failure

- Minimizes the amount of equipment removed from service in event of a failure
- Failure Determination
  - Not started opening in a certain time
  - Not open in a certain time
  - Current not broken in a certain time



# **Duplicate Protection Schemes**



#### **Bus Protection**

\_\_\_\_

\_\_\_\_

\_\_\_\_

-----

# **Bus Protection**

- Over-current
- Differential
- Back-up

- 0

• Under voltage





#### **Differential Protection**





#### Fault Conditions







#### **Bus Protection Scheme**









# Bus Under Voltage Protection







# **Bus Protection**

- Over-current
- Differential
- Back-up
- Under voltage

#### **Transformer Protection**

\_\_\_\_

\_\_\_\_

\_\_\_\_

# **Transformer Protection**

- Instantaneous
- Differential
- Gas
- Thermal Overload
- Ground



# Transformer Characteristics

- High magnetizing inrush currents
- Ratio mismatch with CTs aggravated by tap-changers
- Phase shifts
- Transformers are affected by over-fluxing
- Affected by over-temperature











# 

# Gas Relay

\_\_\_\_;

\_\_\_\_

----



# Winding Temperature



# Ground Fault Protection



# **Transformer Protection**

- Instantaneous
- Differential
- Gas
- Thermal Overload
- Ground

#### **Motor Protection**

\_\_\_\_

\_\_\_\_

# Service Factor

- Continuous allowable overload
  - Many motors some with a power rating and a service factor
  - A 10 HP motor with a service factor of 1.15 has a maximum continuous output of 11.5 HP

# Motor Protection Summary

- Instantaneous Over-current
- Stall
- Thermal Overload
- Phase Unbalance
- Ground



\_\_\_\_\_

# Inverse Time Relay



#### Overload

\_\_\_\_\_





# Single Phase to Ground Protection



#### Stalls



# Thermal Overload & Phase Unbalance



# Diagram of the Unit

\_\_\_\_

















# Motor Protection Summary

- Instantaneous Over-current
- Stall
- Thermal Overload
- Phase Unbalance
- Ground

#### **Generator Protection**

\_\_\_\_

\_\_\_\_

\_\_\_\_

# Classes of TG trips

- Class A
  - Trip generator breaker, field breaker and turbine
  - Electrical trips before the output breakers
  - Class B
    - Trip generator output but leave it supplying station service
    - Electrical faults in the switchyard

# Classes of TG trips

- Class C
  - Over excitation high V/Hz
  - Only used when generator is isolated from grid
- Class D
  - Trip turbine
  - Trip Generator after motoring is detected
  - Mechanical type turbine trips high condenser pressure

# Generator Protection

- Over-current
- Overload
- Differential
- Split phase differential
- Ground
- Rotor ground
- Phase Unbalance
- Low field
- Under frequency
- Out of Step
- Reverse power



#### Differential





#### **Ground Fault Protection**



# Rotor Ground Fault

\_\_\_\_



# Other Protections

- Phase Unbalance
- Loss of field
- Under frequency
- Out of Step



# Generator Protection

- Over-current
- Overload
- Differential
- Split phase differential
- Ground
- Rotor ground
- Phase Unbalance
- Low field
- Under frequency
- Out of Step
- Reverse power



#### For You To Do

