
22 גליון 43, נובמבר 2012

1. Introduction
The growing demand for broadband wireless communication 
links and the deficiency of wide frequency bands within the 
conventional spectrum, require utilization of higher microwave 
and millimeter-wave spectrum at the Extremely High Frequencies 
(EHF) above 30GHz (see table 1). 

Table 1: The electromagnetic spectrum.
WAVELENGTHFREQUENCYIEEEBAND

3 - 30HzELFExtremely Low Frequency

30 - 300HzSLFSuper Low Frequency

1,000 - 100 Km300 - 3,000 HzULFUltra Low Frequency

100 – 10 Km3 - 30 KHzVLFVery Low Frequency

10 - 1 Km30 - 300 KHzLFLow Frequency

1 - 0.1 Km300 - 3,000 KHzMFMedium Frequency

100 - 10 m3 - 30 MHzHFHigh Frequency

10 – 1 m30 - 300 MHzVHFVery High Frequency

1 - 0.1 m300 - 3,000 MHzUHFUltra High Frequency

1 - 2 GHzL

2 - 4 GHzS

10 - 1 cm3 - 30 GHzSHFSuper High Frequency

4 - 8 GHzC

8 - 12 GHzX

12 - 18 GHzKu

18 - 26.5 GHzK

26.5 - 40 GHzKa

1 - 0.1 cm30 - 300 GHzEHFExtremely High Frequency

40 - 75 GHzV

75 - 110 GHzW

1 – 0.1 mm300 - 3,000 GHzFIRSub-millimeter (TeraHertz)

100 – 10 µm3 – 30 THzMIRMid infra-red

10 – 1 µm30 – 300 THzNIRNear infra-red

In addition to the fact that the EHF band (30-300GHz) covers a 
wide range, which is relatively free of spectrum users, it offers 
many advantages for wireless communication and RADAR 
systems as follows:
* Broad bandwidths for high data rate information transfer
* High directivity and spatial resolution
* Low transmission power (due to high antenna gain)
* Low probability of interference/interception (due to narrow 

antenna beam-widths)
* Small antenna and equipment size
* No multipath fadings (although fading can be caused by 

atmospheric conditions)
Among the practical advantages of using the EHF region for 
satellite communications systems is the ability to employ smaller 
transmitting and receiving antennas. This allows the use of a 
smaller satellite and a lighter launch vehicle. 

Some of the principal challenges in realizing modern wireless 
communication links at the EHF band are the effects emerging 
when the electromagnetic radiation propagates through the 
atmosphere. When millimeter-wave radiation passes through the 
atmosphere, it suffers from selective absorption in molecules of 
the gases composing the air. 

2. The Atmosphere
The atmosphere of Earth is a composition of gases surrounding the 
planet Earth that is retained by Earth’s gravity. The atmosphere is 
divided into several principal layers as shown in Table 2. Pressure 
and density decrease in the atmosphere as height increases, while 
temperature may remain relatively constant or even increase with 
altitude in some regions. 

Table 2: The layers of the atmosphere

Outer space Magnetosphere
70,000Km

Plasmasphere
10,000Km

Ionosphere
Exosphere

Atmosphere

800Km
Thermosphere500Km
Mesosphere80Km
Stratosphere50Km
Troposphere8-18Km

The lower layer of the atmosphere is the Troposphere beginning at 
the surface and extends to between 8Km at the poles and 18 km at 
the equator, with some variation due to weather. The troposphere 
is mostly heated by transfer of energy from the surface, resulting 
in descending temperature with altitude. The tropospheric air is 
a mixture of gasses containing roughly 80% of the mass of the 
atmosphere. Dry air contains 78.084% Nitrogen (N2), 20.948% 
Oxygen (O2), 0.934% Argon (Ar), 0.0314% Carbon dioxide 
(CO2), and small amounts of other gases. Humid atmosphere also 
contains a variable amount of water vapor, around 1-4%. The air 
also contains of dust, haze and other pollutant particles. 

3. Millimeter wave propagation in the Troposphere
At lower frequencies, up to the UHF regime, the atmosphere 
transparent to the electromagnetic radiation propagating in the 
medium. However, as the frequency is increased, absorption is 
revealed. When millimeter-wave radiation passes through the 
atmosphere, it suffers from selective molecular absorption due to 
molecular rotational resonances mainly in water and oxygen.
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localized (point) isotropic source and propagating in a medium 
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The transmission characteristics of the atmosphere at the EHF band, as shown in 

Figure 1, was calculated with the millimeter propagation model (MPM), developed 

by Liebe1. Curves are drawn for several values of relative-humidity (RH), assuming 

clear sky and no rain. Inspection of Figure 1.a reveals absorption peaks at 22GHz and 

183GHz, where resonance absorption of water (H2O) occurs, as well as absorption 

peaks at 60GHz and 119GHz, due to absorption resonances of oxygen (O2). Between 

these frequencies, minimum attenuation is obtained at 35GHz (Ka-band), 94GHz (W-
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The transmission characteristics are determined by weather 
conditions such as temperature, pressure and humidity. The 
absorption is proportional to air density, and thus reduces with 
height. Attenuation due to fog, haze, clouds, rain and snow is 
one of the dominant causes of fading in wireless communication 
links operating in the EHF band. Raindrops and dust scatter 
millimeter wave radiation, resulting in amplitude fluctuations and 
phase randomness in the received signal. This further degrades 
the availability and performance of the communication links. 
Sufficient fade margins are essential for a reliable system.

4. Summary
The inhomogeneous transmission in a band of frequencies causes 
absorptive and dispersive effects in the amplitude and in phase of 
wide-band signals transmitted in the EHF band. The frequency 
response of the atmosphere plays a significant role as the data 
rate of a wireless digital radio channel is increased. The resulting 
amplitude and phase distortion leads to inter-symbol interference, 
and thus to an increase in the bit error rate (BER). These 
effects should be taken into account in the design of broadband 
communication systems, including careful consideration 
of appropriate modulation, equalization and multiplexing 
techniques.
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