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Abstract
The long distances Microwave (MW) Wireless Power Transmission 
(WPT) concepts are presented for two promising cases: the High 
Altitude Platforms (HAPS) and the Solar Power Satellites (SPS) 
systems.
Long operation of   Stratospheric HAPS at altitude of 17 to 24km 
operating from solar cells which require up to 250 kW of electrical 
power in case of maximum wind conditions is limited by long sun 
eclipses. The realization of terrestrial MW WPT systems feeding 
HAPS could be useful for their long duration operation and for the 
preliminary tests of more complex and power demanding Solar 
Power Satellites (SPS) systems at operation distances of more 
than 36000 km. However techniques to mitigate Electro Magnetic 
Interference (EMI) and biological hazards effects are required 
in order to enable the operation of these future systems. Several 
mitigation techniques will be discussed in this presentation for 
selected frequencies and compared for HAPS and much more 
complex SPS long range MW WPT systems.
Long Distances Microwave Wireless Power Transportation: 
EMI and Biological Hazards Issues
    1. Long Distances Microwave Wireless Power transmission 
Concepts 
 Significant advancements in Microwave (MW) power tubes, 
antennas, control tracking systems, PV solar cells and especially 
the development of efficient receivers rectifying Antennas ( 
RECTENNAs) converting the MW energy to  direct Current (DC) 
enabled the development of long distance WPT systems [1,2]. 
The main categories of long distance MW WPT systems are: 
Terrestrial to terrestrial, .terrestrial based to atmospheric platforms 
including High Altitude Platforms (HAPS), which is the main 
subject of this paper, and satellites based to terrestrial called Solar 
Power Satellites (SPS) to supply big amount of clean electrical 
energy[3,4].
 G. Goubau and W.C Brown have derived the relations of the WPT 
system efficiency as functions of the distance d, the frequency f and 
the surfaces of the transmitter (Tx) array and of the RECTENNA 
[5]. The MW WPT transmitter antenna has to be in Line Of  Site 
(LOS) conditions with the receiver (Rx) RECTENNA. A simple 
block diagram of a typical MW WPT system is presented in 
figure1. 
HAPS  have a potential to become a low cost and useful alternative 
or complement to Geostationary Earth Orbit (GEO) and Low 
Earth Orbit (LEO) satellites. The HAPS optimal altitudes are from 

17 to 24 km, located at the lower troposphere layers above the jet 
stream due to minimum velocity of wind, drag and temperature. 
However HAPS main disadvantage is their long eclipse time [6,7]. 
For instance, a HAP above north Europe will receive in the winter 
time only  a few hours of sun per day  because of the earth shadow. 
Therefore HAPS need significantly bigger and heavier energy 
production and storage systems than satellites. The electrical 
power required by HAPS is usually in the range of 10 to 250 kW 
for payload, stabilization and fixed positioning [3,7]. WPT would 
be an attractive solution for HAPS to operate for months or years 
such as depicted in figure 2. Several tests were successful for low 
altitude airborne platforms but not yet for a HAPS at an altitude 
of around 20 km [3,5].  The realization of MW WPT systems for 
HAPS could contribute to more complex and power demanding 
future SPS supplying to terrestrial grid huge amount of energy for 
operation distances of hundreds of km in case of LEO and up to 
38000  km in case of GEO satellites as depicted in figure3 [2]. 
2. Long Distances MW WPT EMI and Bio-Hazards 
Considerations
Considering ITU recommendations the Industrial, Scientific and 
Medical (ISM) frequency   bands from (2.4-2.5) or (5.725-5.875) 
GHz can be chosen for MW WPT systems. The use of higher 
frequencies are preferable to achieve compactness and smaller 
physical dimensions [2,8]. However atmospheric and dispersion 
losses increase with frequency.
 The main requirements for the MW WPT TX are: linearity 
efficiency reliability low cost and compactness. Selective 
(sharp) output filters can be applied for reducing spurious as the 
transmitted CW power has a very narrow bandwidth [2,5]. HAPS 
Terrestrially located TX power conversion efficiency, reliability 
and compactness are less important than for SPS as power supply 
and heat dissipation possibilities are available as well as permanent 
maintenance on the spot and no launch requirement [3]. A 10dB 
amplitude Gaussian taper distribution can reduce the TX antenna 
array grating and side-lobes and concentrate the power density in 
the center of the transmitted beam both at the TX antenna and at 
the RECTENNA. [2,9]. Thus the external environmental threats 
of  EMI and biological effects are significantly reduced. Recently 
a Raleigh tapper distribution was suggested which enhance the 
accuracy of RECTENNA tracking and the permitted MW power 
transmission [ 10]. A TX  retro-directive guiding systems with 
phase conjugate circuits using a Direct Sequence Spread Spectrum 
multiple access low power signal pilot operating at the half of the 
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MW WPT frequency avoid interference threats from the much 
higher power level MW TX beam [9,11]. 
The WPT HAPS realization is significantly less complex than 
SPS due to a maximum required power of 250 kW instead of GW 
for SPS, and the reduced non linear effects decreasing harmonics, 
spurious and inter-modulation products [2,3] . The MW beam 
length is only around 20 km instead of 36000 km, which require 
much smaller surfaces of the beam, antenna phased array and 
RECTENNA and no interaction with the Ionosphere layers and 
Van Allen belts for the HAPS in comparison with the SPS [2,7].
 Frequency selective surfaces can be installed in front of the 
RECTENNA to attenuate the harmonics without affecting the beam 
fundamental frequency. Also absorbers could be positioned around 
the perimeter of the RECTENNA to reduce interference to other 
radio systems [3,12].The choice of higher frequency bands reduce 
the probability of RFI. The lower 2.45 GHz ISM frequency band 
can interfere with numerous terrestrial and satellite radio systems 
and for instance the second harmonic may disturb the protected 

(4.9-5.0) GHz radio astronomy band. Therefore the 
5.8GHz band is preferred for HAPS in spite of the 
bigger atmospheric losses in case of rain as shown 
in figure4. For dry climate operation and elevated 
locations, even the 35 and 94 GHz atmospheric radio 
Mm bands can be advantageous due to the significant 
reduction of the antenna and RECTENNA arrays 
physical dimensions as well as the MW transmitted 
beam cross section and of the EMI effects [3,8]. 
However the power density in the center of the MW 
WPT beam from the TX to the RECTENNA increases 
significantly for these higher Mm waves and in case of 
high power transmission can exceed the standardized 
Maximum Permissible Exposure (MPE). The main 
MPE limit standards are the ANSI/IEEE and the time 
averaging of exposure is also important [3,13].
The average MPE for HAPS WPT systems at 5.8 GHz 
is around 100 W/m2 [14,15]. However the extreme 
HAP MW WPT power density magnitude do not 
approach the damage values and the 1500 W/m2 of 
the sun light power at the ground, even in the center 
of the MW beam [13,14]. However the TX antenna 
phased array and MW beam areas including a buffer 
zone have to be controlled and restricted only to 
authorized and protected maintenance staff[1,2]. .The 
air traffic should be forbidden in a suitable security 
zone around the TX MW beam. In addition the TX has 
to be switched off or the MW beam power has to be 
significantly reduced when aircrafts, big birds or other 
obstacles penetrate the MW WPT beam perimeter or 
in case of heavy rain [14] .This can be achieved by 
installing close to the TX site an acquisition RADAR 
and a monitoring video camera connected to the TX 
power control loop[3,16]. 

3. Conclusions
In the presentation of a suggested MW WPT system 
from a terrestrial base to HAPS future projects, we have 
used several R&D developments results obtained in 
the evaluation steps of the SPS projects, especially by 
Japanese and USA scientists. The paper results show 
that the cost, technology efforts and environmental 
EMI and bio-hazard threats are significantly less 
for HAPS.  Thus, the  HAPS evaluation results and 
implementation may be useful for the future design 
and realization of MW WPT systems for SPS which 
are much more costly and complex to realize.
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Figure 4: Atmospheric weather losses as function of the frequency and the rain intensity
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