




# What is "Big Data"?

10<sup>15</sup>

- Large (petabyte range) sources of raw data
- Typical sources of big data:
  - economic transactions (for example, credit cards)
    - insurance transactions (for example, Medicare claims)
    - radio telescope receptions (for example, the search for extraterrestrial intelligence)
- Much research on methods for analyzing huge databases
  - Detecting strange events (credit card fraud, medical procedure outcomes, potential extraterrestrial signals, etc.)
  - Human-friendly information about almost incomprehensible masses of data.

© 2013 Power Standards Lab – All rights reserved

3

#### Big Data in electric power

- Data available from smart meters and power system sensors could fall into the "big data" category.
- Example: 100,000 Power quality monitors; 256
  measurements per cycle; 6 channels =

**60 petabytes** of data per year.

Right in the sweet spot of many Big Data systems!



© 2013 Power Standards Lab — All rights reserved

#### How much data flow per instrument?

- About 50 gigabytes per month (2 movies per day)
- Uncompressed raw GPS-stamped data...
- Compression? Probably not.

2 X



© 2013 Power Standards Lab – All rights reserved

5

### Traditional approach to Power Quality

- Develop PQ solutions to improve customer service.
- Power Quality standards.
- Design PQ monitors.
- PQ experts developed specific skills in analysing power system and customers' processes, sequence of events, wave forms and data analysis.

© 2012 Power Standards Lab — All rights reserved

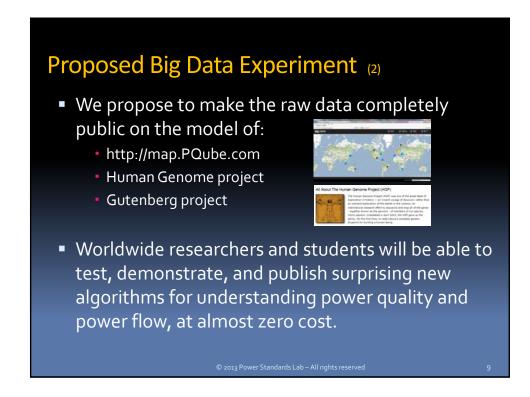
6

#### New challenges!

- Better understand and control the impact of smart grid technologies such as:
  - Distributed Energy Resources and/or Micro-grids
  - Electrical vehicles
  - Advanced power system applications such as volt and var controls
  - "self-healing" grid

© 2013 Power Standards Lab – All rights reserved

7


## Proposed Big Data Experiment (1)

- Let's set up an experimental prototype "big data" power information system.
- Use GPS-synchronized instruments along a single well-documented distribution lines
- Lines that have both diverse loads and dispersed generation and storage.
- Opportunity! This experiment could be a <u>low-cost</u> extension of Israeli mirror of ARPA-E project on micro-synchrophasors.



© 2013 Power Standards Lab — All rights reserved

8





Alex@PowerStandards.com

